A Resilient Image Matching Method with an Affine Invariant Feature Detector and Descriptor
نویسندگان
چکیده
Image feature matching is to seek, localize and identify the similarities across the images. The matched local features between different images can indicate the similarities of their content. Resilience of image feature matching to large view point changes is challenging for a lot of applications such as 3D object reconstruction, object recognition and navigation, etc, which need accurate and robust feature matching from quite different view points. In this paper we propose a novel image feature matching algorithm, integrating our previous proposed Affine Invariant Feature Detector (AIFD) and new proposed Affine Invariant Feature Descriptor (AIFDd). Both stages of this new proposed algorithm can provide sufficient resilience to view point changes. With systematic experiments, we can prove that the proposed method of feature detector and descriptor outperforms other state-of-the-art feature matching algorithms especially on view points robustness. It also performs well under other conditions such as the change of illumination, rotation and compression, etc.
منابع مشابه
Performance Evaluation of Local Detectors in the Presence of Noise for Multi-Sensor Remote Sensing Image Matching
Automatic, efficient, accurate, and stable image matching is one of the most critical issues in remote sensing, photogrammetry, and machine vision. In recent decades, various algorithms have been proposed based on the feature-based framework, which concentrates on detecting and describing local features. Understanding the characteristics of different matching algorithms in various applications ...
متن کاملWeighted Multi-Scale Image Matching Based on Harris- Sift Descriptor
According to the rotational invariance of Harris corner detector and the robustness of Sift descriptor. An improved Harris-Sift corner descriptor was proposed. At first, the algorithm given multi-scale strategy to Harris corner, improved corner counting method and removed redundant points at the same time, then, the corner was directly applied to low-pass Gaussian filter image. Based on the his...
متن کاملDPML-Risk: An Efficient Algorithm for Image Registration
Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...
متن کاملMaximally Stable Local Description for Scale Selection
Scale and affine-invariant local features have shown excellent performance in image matching, object and texture recognition. This paper optimizes keypoint detection to achieve stable local descriptors, and therefore, an improved image representation. The technique performs scale selection based on a region descriptor, here SIFT, and chooses regions for which this descriptor is maximally stable...
متن کاملAn Affine Invariant Interest Point Detector
This paper presents a novel approach for detecting affine invariant interest points. Our method can deal with significant affine transformations including large scale changes. Such transformations introduce significant changes in the point location as well as in the scale and the shape of the neighbourhood of an interest point. Our approach allows to solve for these problems simultaneously. It ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.09623 شماره
صفحات -
تاریخ انتشار 2017